viernes, 2 de diciembre de 2011

formulas de derivadas


En las fórmulas siguientes se considera que  x,a,b,k \in \mathbb{R}, n \in \mathbb{N}:
f\left(x\right) = af'\left(x\right) = 0
f\left(x\right) = xf'\left(x\right) = 1
f\left(x\right) = axf'\left(x\right) = a
f\left(x\right) = ax + bf'\left(x\right) = a
f\left(x\right) = x^nf'\left(x\right) = nx^{n-1}
f\left(x\right) = \sqrt{x}f'\left(x\right) = \frac{1}{2\sqrt{x}}
f\left(x\right) = e^xf'\left(x\right) = e^x
f\left(x\right) = \ln(x)f'\left(x\right) = \frac{1}{x}
f\left(x\right) = a^x (a >0)f'\left(x\right) = a^x \ln(a)
f\left(x\right) = \log_{b}(x)f'\left(x\right) = \frac{1}{x\ln(b)}
f\left(x\right) = \frac{1}{x^n} = x^{-n}f'\left(x\right) = -nx^{-n-1} = \frac{-n}{x^{n+1}}
f\left(x\right) = \operatorname{sen}(x)f'\left(x\right) = \cos(x)
f\left(x\right) = \cos(x)f'\left(x\right) = -\operatorname{sen}(x)
f\left(x\right) = \tan(x)f'\left(x\right)=\sec^2(x)=\frac{1}{cos^2(x)}=1+\tan^2(x)
f\left(x\right) = \csc(x)f'\left(x\right) = -\csc(x)\cot(x)
f\left(x\right) = \sec(x)f'\left(x\right) = \sec(x)\tan(x)
f\left(x\right) = \cot(x)f'\left(x\right) = -\csc^2(x)
f\left(x\right) = \operatorname{arcsen}(x)f'\left(x\right) = \frac{1}{\sqrt{1-x^2}}
f\left(x\right) = \arccos(x)f'\left(x\right) = \frac{-1}{\sqrt{1-x^2}}
f\left(x\right) = \arctan(x)f'\left(x\right) = \frac{1}{1+x^2}
f\left(x\right) = g(x) \pm h(x)f'\left(x\right) = g'(x) \pm h'(x)
f\left(x\right) = g(x) \cdot h(x)f'\left(x\right) = g'(x) \cdot h(x) + g(x) \cdot h'(x)
f\left(x\right) = k \cdot g(x)f'\left(x\right) = k \cdot g'(x)
f\left(x\right) = \frac{g(x)}{h(x)}f'\left(x\right) = \frac{g'(x) \cdot h(x) - g(x) \cdot h'(x)}{h^2(x)}
f\left(x\right) = g\left(x\right)^{h\left(x\right)}f'\left(x\right) = h\left(x\right) \cdot g'\left(x\right) \cdot g\left(x\right)^{\left(h\left(x\right)-1\right)} + g\left(x\right)^{h\left(x\right)} \cdot h'\left(x\right) \cdot ln\left(g\left(x\right)\right)
f\left(x\right) = g \circ h = g(h(x))f'\left(x\right) = (g'\circ h) \cdot h' = g'(h(x)) \cdot h'(x) 

No hay comentarios:

Publicar un comentario